3D Body Scanning as a Valuable Tool for User Centered Design

Alexandra De Raeve
International Design Conference of Smart Living for Elderly
Taipei, 2 December 2017
Content

- FTI-lab
- Introduction – Historical evolution of the fashion industry
- Ageing Society
- Mass customization
- Sizing systems
- Clothing comfort
- 3D body scanning Smartfit methodology
- Design requirements for the ageing population
- Conclusions and future research topics
FTI-lab University College Ghent
FTI-lab

• Leading provider product development services
• Fields of Expertise:
 – (Multi)functional & smart textile materials and related processing technologies
 – Bio-chemistry based textile processing
 – Digitisation & flexibilisation of product development and production processes
 – Cultivation & processing and application of hemp
 – Garment manufacturing
 – Thermophysiological & sensorial comfort
• 8 FTE researchers and +20 academics with various backgrounds
• Demonstration platform & prototyping infrastructure
Introduction

Historical Evolution of the Fashion Industry
Trends
Historical evolution

Haute Couture

Ready-to-wear

• 1900

• 1950

• 1970-1980 …
Megatrends

- Demographic changes
- Globalization
- Economic power shift
- Climate change
- Resource scarcity
- Break through technologies & digital revolution
- Mass customization
Demographic change: Ageing Society

Clothing Needs versus Availability
Ageing in Belgium and worldwide

Percentage of 65+

<table>
<thead>
<tr>
<th>Country</th>
<th>% in 1960</th>
<th>% in 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Japan</td>
<td>6</td>
<td>26.3</td>
</tr>
<tr>
<td>2. Italy</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>18. Belgium</td>
<td>12</td>
<td>18.5 (1/1/2017)</td>
</tr>
<tr>
<td>World</td>
<td>4.9</td>
<td>8.5</td>
</tr>
</tbody>
</table>
Silver Economy

• 3rd largest economy in the world ($ 7 trillion)

• Global growth of Silver Economy
 – Increase of $ 92 billion in 2013
 – Private spending power of 65+ estimated at $ 15 trillion by 2020

• Clothing and textiles are important aspects within the Silver Economy
Clothing & the elderly population

- Major concern: **DIGNITY & COMFORT**
- Other:
 - attractiveness;
 - masking physical imperfections;
 - adapted to changing physique;
 - prolonging independant functioning;
 - available in adequate supplies and price categories.
- Flanders and Europe: only a limited number of clothing meets these requirements
 → *Need for mass customized apparel*
Mass Customization
Mass customization

- Design and manufacture consumer goods and services for an extended market
- Products are customized according to distinct customer desires
- Products and services can be offered at a price comparable to mass production
- Challenge?
 Balance between added value through differentiation and reducing costs through mass production of commodities
Customization in Fashion
Need for strategic innovation in fashion business model

• Flexible, small batch oriented manufacturing processes
• Digitalisation of product development and processing
Ready-to-Wear size tables

Apparel product development & Fit
1D versus 3D
Current methods to create sizes and assess fit
Current methods to create sizes and assess fit
What’s the problem?

1-D Percentiles Are Not Additive!
3-D Models from 1-D Measures Add Undetected Error!

- **Sum of 5th %ile Parts** = 136.89 cm
 - 5th %ile Height = 152.50 cm
 - Difference = 15.61 cm
- **Sum of 95th %ile Parts** = 188.81 cm
 - 95th %ile Height = 173.06 cm
 - Difference = 15.75 cm

SAMPLE SIZE = 3235

From Robinette and McConville 1982
Clothing comfort

Thermophysiological perceptions
Sensory perceptions
Parameters influencing comfort
Comfort = Perception of well-being

Physiological conditions
- Thermophysiological comfort: thermo-regulation & moisture regulation
 - Fabric
 - Style
 - Fit

Sensorial comfort
- Fabric
- Fit
- Assembly technique

Psychological conditions
- Aesthetics
- Design/Style
- Fit
- Quality

IDC Smart Living for Elderly 2017
Thermal Balance

<table>
<thead>
<tr>
<th>Activity</th>
<th>Energy (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting</td>
<td>90</td>
</tr>
<tr>
<td>Walking (1.6 km/h)</td>
<td>140-175</td>
</tr>
<tr>
<td>Walking (4.8 km/h)</td>
<td>280-350</td>
</tr>
<tr>
<td>Cycling (16 km/h)</td>
<td>420-490</td>
</tr>
<tr>
<td>Running (8 km/h)</td>
<td>700-770</td>
</tr>
<tr>
<td>Sprinting</td>
<td>1400-1500</td>
</tr>
</tbody>
</table>

Individual factors:
- metabolism, physical condition
- climate: temperature, humidity, wind, precipitation
- effort level
- clothing

Heat balance

Environmental
- Radiant
- Conductive
- Convection

Metabolic
- SEM/TME
- Thermogenesis
- Muscular activity
 - Postural
 - ADL
 - Exercise
Heat loss

Evaporation
(evaporating 1g H_2O: 2424 J)
difficult in tropical conditions

Convection/Conduction
(stops when $T_{environment} \sim T_{body}$)

Radiation
Product characteristics supporting thermal regulation

- Thermal conductivity
- Windproofing capacity
- Water vapour permeability → closely related
- Creation of a micro climate
Thermal conductivity

• The heat flux through a textile material is a combination of conduction (function of thickness and conductivity) and radiation (higher in low fibre volumes)

• Mainly function of material thickness

• Layers of air (stationary) increase the insulating capacity (0.85 clo)
Windproofing capacity

- Wind compresses the material \rightarrow thickness \downarrow insulating capacity \downarrow
- Brings stationary air in the clothing system in motion \rightarrow losses by convection \uparrow
- $v_{\text{air}} = 0.15 \text{ m/s} \rightarrow$ insulating ability air layer = 0.85 clo
- $v_{\text{air}} = 15 \text{ m/s} \rightarrow$ insulating ability air layer = 0.15 clo
- Coating will improve windproofing capacity but water vapour permeability will decrease
Water Vapour Permeability

• Sweating is an important mechanism to remove excess heat from the body
• Heat is deprived of the body to evaporate moisture from the skin
Sweating

- Non perceptible: sweat is transported as vapour through the pores of the textile material → water vapour permeability
- Perceptible: clothing in contact with the body becomes wet → absorption and transportation (wicking) of moisture
- Accumulated moisture → insulating capacity
Product characteristics supporting tactility

- Bending stiffness
- Coefficient of friction
- Compressibility
- Thermal conductivity/heat flux
- Moisture management
- Thickness
- Weight
- Elasticity
Parameters influencing comfort

- Fibre related parameters (20 %)
 - Chemistry/Morphology
 - Fineness, crimp and section
 - Length
 - Density
 - Friction property
 - Finishing
- Construction related parameters (80 %)
Construction related parameters (material)

• Yarn
 – Yarn type (staple fiber, continuous filament, textured)
 – Linear density
 – Twist

• Fabric
 – Production method (woven fabric, knitted fabric, non woven)
 – Construction (weave, density)
 – Weight
 – Thickness/voluminousity
 – Roughness

• Dyeing & Finishing process
 – Heat treatment
 – Brushing
 – Calandering
 – Softening
 – Coating
3D Body Scanning

- Determining the body dimensions and shapes of the Belgian population
- Development of standard size charts
- Development of 3D virtual manikins (avatars)
Set Up

Sample ± 2500 persons age 3 – 70 years
Measurements extracted ± 180 per person
The hourglass figure is no longer relevant

The Different Shapes

- **Hourglass**: 8.40%
 - Bust and hips are basically the same circumference - though the bust can be up to 1” larger than the hips. The waist is then 9” or more smaller than the bust.

- **Spoon**: 20.92%
 - Where the hips are 2” or more larger than the bust. The waist is less than 9.25” smaller than the bust.

- **Rectangle**: 46.12%
 - Where the bust and hips are basically the same circumference. The waist is less than 9” smaller than the bust.

- **Triangle**: 13.83%
 - The bust is 3.6” or larger than the hips and the waist is less than 9” smaller than the bust.

Results are from 6318 women scanned

Source: Alvanon
One size, different shape

<table>
<thead>
<tr>
<th>AGE</th>
<th>CHEST</th>
<th>WAIST</th>
<th>HIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>91</td>
<td>71</td>
<td>95</td>
</tr>
<tr>
<td>30</td>
<td>87</td>
<td>68</td>
<td>92</td>
</tr>
<tr>
<td>40</td>
<td>89</td>
<td>70</td>
<td>94</td>
</tr>
</tbody>
</table>

IDC Smart Living for Elderly 2017
Age matters, body shapes change

Breasts

- **Stage 0:** Before ageing starts... breasts are ideally round.
- **Stage 1:** A sign that ageing has begun. The upper part of the breasts splits.
- **Stage 2:** As the breasts begin to sag, the nipples begin to point downward.
- **Stage 3:** The breasts continue to sag, turning outward. They also continue to become softer.

Hips

- **Stage 0:** Before ageing starts... when viewed sideways, it makes a beautiful semicircle.
- **Stage 1:** Signs that ageing has begun. The lower portion of the hips sags downward.
- **Stage 2:** The waist loses its definition. The peak of the hips moves downward.
- **Stage 3:** The hip area sags and turns inward.
Body measurement tables FEMALE

Garments for full or upper body, primary dimension BUST Girth, intervals according EN 13402-3 (2013)

<table>
<thead>
<tr>
<th>SIZE</th>
<th>32</th>
<th>34</th>
<th>36</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>44</th>
<th>46</th>
<th>48</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUST</td>
<td>74-78</td>
<td>78-82</td>
<td>82-86</td>
<td>86-90</td>
<td>90-94</td>
<td>94-98</td>
<td>98-102</td>
<td>102-107</td>
<td>107-113</td>
<td>113-119</td>
</tr>
</tbody>
</table>

14-17

AVERAGE
HEIGHT
165 CM

<table>
<thead>
<tr>
<th>18-25</th>
<th>26-50</th>
<th>51-70</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE</td>
<td>AVERAGE</td>
<td>AVERAGE</td>
</tr>
<tr>
<td>HEIGHT</td>
<td>LENGTH</td>
<td>HEIGHT</td>
</tr>
<tr>
<td>166 CM</td>
<td>166 CM</td>
<td>164 CM</td>
</tr>
</tbody>
</table>

Total number of measurement tables = 7
Body measurement tables FEMALE
Garments for lower body, primary dimension HIP GIRTH, intervals according EN 13402-3 (2013)

<table>
<thead>
<tr>
<th>SIZE</th>
<th>32</th>
<th>34</th>
<th>36</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>44</th>
<th>46</th>
<th>48</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUST Girth</td>
<td>80-84</td>
<td>84-88</td>
<td>88-92</td>
<td>92-96</td>
<td>96-100</td>
<td>100-104</td>
<td>104-108</td>
<td>108-112</td>
<td>112-117</td>
<td>117-122</td>
</tr>
<tr>
<td>14-17</td>
<td></td>
</tr>
<tr>
<td>Average Height</td>
<td>165 CM</td>
</tr>
<tr>
<td>18-25</td>
<td></td>
</tr>
<tr>
<td>Average Height</td>
<td>166 CM</td>
</tr>
<tr>
<td>26-50</td>
<td></td>
</tr>
<tr>
<td>Average Length</td>
<td>166 CM</td>
</tr>
<tr>
<td>51-70</td>
<td></td>
</tr>
<tr>
<td>Average Height</td>
<td>164 CM</td>
</tr>
</tbody>
</table>

IDC Smart Living for Elderly 2017
Body measurement tables

Female body evolution size 40

Hip intersection
Waist intersection

14 - 17

Female body evolution size 44

Hip intersection
Waist intersection
Body measurement tables

Upper versus lower body size 40

Upper versus lower body size 48

26 - 50 FEMALE 26 - 50
Body measurement tables

Upper versus lower body size 46

18 - 25 FEMALE 51 - 70

Upper versus lower body size 46

IDC Smart Living for Elderly 2017
Male body shape evolution

Male body evolution size 48

Male body evolution size 54

18 - 25

Hip intersection
Waist intersection
Hip intersection
Waist intersection

IDC Smart Living for Elderly 2017
1990 VERSUS 2013 – female 26-50
1990 VERSUS 2013 – female 26-50

Size 38
1990

Size 38
2014
Allometric grading technique

• Establish a relationship between body form and grading technique
• Grade according to body characteristics, not proportional (e.g. sloped waist)
Design Requirements for the Ageing Population

Inventory of needs and requirements
Methodology

• Focus groups elderly:
 – Living at home without care needs
 – Living at home with care needs
 – Living in nursing home

• Focus groups professionals
 – Professionals in home care
 – Professionals in nursing homes
Inclusion & exclusion criteria

• Elderly:
 – Willing to speak about clothing in public
 – No cognitive disabilities

• Professionals:
 – Willing to speak about their experiences with clothing while nursing elderly people
 – Offer help to dress and undress elderly daily
Rendering results

elderly

professionals

similarities

IDG - Smart Living for Elderly 2017
Results

• Requirements:
 – Easy to maintain, quality
 – Easy to wash
 – Easy to iron
 – Maintain shape after several washing cycles
 – Elderly in nursing homes: industrial washable
 – Comfortable
• Willing to pay more for quality
 – Shop adapted to their needs
 – Good service
• Fitted but higher waistbands
• Elastic fabrics
• Clothing for Wheelchair users:
 – Skirts and trousers should be longer
 – Need for a high waist (cover the back)
• Difficult to pull on shirts and dresses:
 – Shirts are not elastic and arms must be taken to far to the back
 – Dresses need to be pulled over the head
 – Two piece dresses would be more convenient
• Buttons and zippers are too small which complicates closing and opening
• Adaptations must be discreet, not stigmatizing
• Transition to adapted clothing is difficult
Elderly wear their clothing ‘their own way’: high-rise fit not adapted!
Conclusion
Customizing for specific target groups

<table>
<thead>
<tr>
<th>Pose</th>
<th>Arm length (shoulder to wrist)</th>
<th>Arm girth (biceps)</th>
<th>Waistband slightly inclined</th>
<th>Waistband strongly inclined</th>
<th>Chest girth (maximum)</th>
<th>Back width (under arms)</th>
<th>Back length (to waistband)</th>
</tr>
</thead>
<tbody>
<tr>
<td>strained</td>
<td>64</td>
<td>26.8</td>
<td>85.4</td>
<td>85.4</td>
<td>110.6</td>
<td>44.1</td>
<td>48.5</td>
</tr>
<tr>
<td>relaxed</td>
<td>59.1</td>
<td>32</td>
<td>84.9</td>
<td>94.7</td>
<td>106.8</td>
<td>37.7</td>
<td>52.4</td>
</tr>
</tbody>
</table>
Customizing for specific target groups: elderly

- Adapted workwear and personal protective garments
- Adapted hospital gowns

...
Acknowledgements

We would like to thank the Flemish agency for innovation and entrepreneurship.
Thank you for your attention

Alexandra De Raeve
Department of Fashion, Textile and Wood Technology
alexandra.deraeve@hogent.be